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Exact renormalization group equations are derived for a position-space 
renormalization of spin systems with weak long-range forces. It is shown 
how an apparent dependence of the critical exponents on the choice of 
the renormalization group can be resolved via the mechanism of "dangerous 
irrelevant variables" and that this same mechanism is responsible for the 
breakdown of hyperscaling. The dimension d = 4 can be seen to be a 
borderline dimension above which classical critical exponents are expected. 
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1. I N T R O D U C T I O N  

H y p e r s c a l i n g  m a y  be expressed  by  sca l ing  laws i n v o l v i n g  the  d i m e n s i o n a l i t y  

d o f  the  sys tem,  ~1) e.g.,  

c~ = 2 - dv (1) 

whe re  c~ and  v are  the  cr i t ica l  indices  cha rac t e r i z ing  the  s ingu la r  zero- f ie ld  

specif ic  hea t  a n d  c o r r e l a t i o n  l eng th  b e h a v i o r  n e a r  the  cr i t ica l  po in t .  These  

sca l ing  laws are  n o t  genera l ly  val id.  (2) F o r  example ,  the  s t a n d a r d  set o f  so- 

ca l led  c l a s s i c a l  cr i t ica l  indices ,  a m o n g  t h e m  c~ = 0 a n d  v = �89 does  n o t  

sat isfy (1) w h e n  d r 4. 

Whi l e  r e n o r m a l i z a t i o n  t h e o r y  in its s t a n d a r d  f o r m  (see, e.g.,  Ref .  3) 

seems to  imp ly  hypersca l ing ,  a t  leas t  one  m e c h a n i s m ,  wh ich  w o u l d  a l low 
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hyperscaling to be violated, can be devised 4 within the theory. This is the 
presence of so-called "dangerous"  irrelevant variables, which may rescale 
the singular free energy. Our motivation for the present study is that it 
would be of considerable interest to see more explicitly what happens in 
a model which on the one hand violates hyperscaling and on the other hand 
is amenable to a renormalization-group treatment without the usual trunca- 
tion approximations. Spin systems with weak long-range forces 5 are such 
models. They can be analyzed completely in the limit of the strength and the 
inverse range of the interaction simultaneously going to zero, and they 
constitute in this limit mean-field models with classical indices. 

We use position-space renormalization transformations (6~ between the 
Ising spin Hamiltonian H(s)  and a Hamiltonian H'(s') for collective cell 
spins s~': 

e n'(s'~ = ~ T(s', s)e ms' (2) 
(s} 

There is a considerable freedom both in the grouping of neighboring lattice 
sites into cells, whereby the length scale of the transformation is defined, 
and in the choice of the weight function T(s', s) in the conversion of the 
site-spin problem into the cell-spin problem. We do not make a definite 
choice for the transformation; on the contrary, it will turn out to be crucial 
for the analysis that we keep this freedom. 

In Section 2 we define the models under consideration and note in 
particular that, as far as thermodynamics is concerned, weak long-range 
forces in the infinite-range limit are equivalent to uniform interactions 
scaled down by the size of the system. Section 3 is devoted to a derivation 
of the exact renormalization recursion relations for the latter model by a 
saddle point method. The renormalization equations appear in a form from 
which the fixed point, which includes n-spin couplings for arbitrary, even n, 
can be directly determined. The renormalization equations are subsequently 
brought into a linear form by passing to new coordinates, which are the 
generalized scaling fields ~7~ for the problem. The conditions under which 
there exists a regular relationship between the old and the new coordinates 
are discussed. 

The thermodynamic scaling behavior resulting from the so-introduced 
renormalization equations is discussed in Section 4. It is noted that the 
usual (6~ relations between critical exponents and eigenvalues give rise to 
critical exponents that seem to depend on the choice of the renormalization 
transformation. However, we proceed to show that it is precisely the free- 
dom in choice of the renormalization transformation that implies the singular 
behavior of certain scaling functions, i.e., the presence of "dangerous"  

4 A p p a r e n t l y  first p roposed  by Fisher .  (4) 
Fo r  references  see the  review by H e m m e r  and  Lebowi tz .  c5) 
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irrelevant variables. Taking into account this singularity leads to new critical 
exponents corresponding to the correct classical behavior. 

In order to obtain the scaling behavior of  the correlation length one 
must discuss the long-range limit more carefully. In Section 5 we use a 
cumulant expansion which enables us to calculate the renormalization 
equations for long-range potentials that are not uniform, leading to an 
equation governing the transformation of the interaction range. In a dis- 
cussion of the scaling behavior of the correlation length it is then found 
that it is this range that acts now as a dangerous variable and brings about 
a relation between the critical exponent v and the eigenvalues of the re- 
normalization group that differs from the usual one, thereby violating the 
hyperscaling relation (1). 

In the last section we review our main results. As a second consequence 
of the transformation law for the range of the potential we find that the 
infinite-range fixed point is attractive for finite-range potentials when d > 4. 
This is a well-known result (8> of the E-expansion, but which, to our knowl- 
edge, has not previously been found in the context of a position-space 
renormalization group. 

2. M O D E L  

The spins of the model are Ising spins %,  localized on a regular d- 
dimensional lattice. The class of Hamiltonians we consider, 

- =  = , ( 3 )  
n = l  (rz , . . . , r  n) 

contain translation-invariant weak interaction potentials of long range, (5) 

J.(rz,..., r.) = ?a(.-1%(~,r2z, er~z ,..., ~,r.1) (4) 

where ~, is a small parameter. The limit y --~ 0 is considered, taken in such a 
way that the range ~,-z remains small compared with the linear size of the 
system. The conditions on the functions j~ are that the interactions should 
be ferromagnetic in nature and should possess finite total strengths 

Jn = ~ J.(rz ..... r .)  (5) 
r2,. . . ,rn 

and well-defined ranges 

[ ,..~., j 1~'~ R. = (r2,1 + "" + r.,1)2J~(rl .... , r.)/J~[ (6) 
r 2 I '  n 

By (4), J .  does not depend upon y, while R.  oc y-z.  
As far as calculations of thermodynamic quantities are concerned, the 

y - +  0 limit can be shown by standard methods to be equivalent to using 
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distance-independent potentials, scaled down with an appropriate power of 
the size of the system. Assuming each spin configuration to occur only once 
in the Hamiltonian (3), the equivalent uniform interaction Hamiltonian for 
a system of N spins is 

H(s) = Ne(m), (7) 

with 
N 

m = N -1 ~.. S,, (8) 
i = l  

and the energy function e(m) is defined by 

e(m) = ~, S,m"/n! (9) 
n >~l  

In order to facilitate the comparison with what we will find later, it is useful 
to recall the standard solution for a system with such a uniform potential. 
I f  one introduces the entropy function 

s (m)=  m +  l l n m +  1 1 - m l n l  - m  (10) 
2 2 2 2 

which is the entropy (per spin) of a free system with fixed magnetization m, 
then the free energy is given by 

f = max[e(m) + s(m)] (11) 
{m} 

in the thermodynamic limit. 
Expanding in powers of m, one obtains the usual Landau expression 

[ f = In 2 + max.~ (J2 - 1)m 2 + (J~ - 2)m ~ + ... (12) 
'~m~. L z. 41 

which has a classical critical point at J2 = 1 provided that J~ < 2. Above the 
critical point (J2 < 1) the maximum is located at m = 0 and the free energy 
equals In 2. 

3. R E N O R M A L I Z A T I O N  O F  T H E  U N I F O R M  I N T E R A C T I O N  
H A M I L T O N I A N  

For a uniform interaction Hamiltonian (7) 

H(s) = Ne(m) (13) 

we first calculate the cell-spin Hamiltonian H'(s') for a transformation (2), 
which dilutes the degrees of freedom with a factor 

N' /N  = l -a (14) 
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We assume the weight function T(s ' ;  s) to be a product of  weight functions 
t (s '  ; sl  .... , sz~), one for each cell: 

N" 

7"(s'; s) = 1 - [  t(s; . ;  sj..1 ..... (15) 
y = l  

with a partition-function-conserving normalization 

t ( + ; s l  ..... s,d) + t ( - ; s l  .... , s ~ ) =  1 (16) 

We first perform all summations over the site spins s~ = + 1 under the con- 
straint that their sum equals Nm.  By insertion of a Kronecker delta function 

3~s,.Nm = (2~' i)-1~ d y e x p y  s , -  m N  (17) 

these summations can be done independently: 

~ N '  

T(s';s)en~S) = eNe m  fo-z, (dy/27ri)e-umN ,'=z ~ Z(s; , )  (18) 

The product extends over all cells, with, for cell j ' ,  the factor 

Z(s~.) = ~ .  t(s~,; sl .... , s,a) expy(s l  + . . -+sz , )  
Sl~...,Sld 

-= exp[a(y) + b(y)s~.] (19) 

The functions a(y )  and b(y )  are characteristics for the renormalization trans- 
formation chosen and b(y )  is expressed in terms of the weight function as 

exp 2b(y) : ~ ...... ,~ t ( +  ; sl ..... sz~) exp y(s~ + ... + szd) (20) 
Z~ ..... ,d t ( -  ; sl ..... s~) expy(sl  + ... + sz~) 

The function b(y )  may be considered as the renormalized magnetic field of  
a single (independent) cell in magnetic field y. The normalization condition 
(16) relates a(y )  and b(y )  to each other as 

a(y )  = l d ln(2 cosh y) - ln[2 cosh b(y)] (21) 

In this section we will restrict ourselves to weight functions that are in- 
variant under a simultaneous reversal of cell and site spins: 

t ( +  ; s~,..., s~d) = t ( -  ; - s l  ..... -sz~) (22) 

which implies that b(y )  is an odd function of y. Moreover, we assume that 
t(_+ ; s~ .... , s~) is such that the derivative b(y )  is bounded by 

0 < b(y )  < l ~ (23) 

implying that b(y )  is a monotonically increasing function of y. 
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Returning to the calculation of the renormalized Hamiltonian H'(s'), 
we see by inserting (19) into (18) that H'(s') is a function of 

N '  

m ' =  ~ s~,/N' (24) 
i '  = 1 

This allows us to write 

H'(s') = Ng + N'e'(rn') (25) 

where the constant g has to be chosen such that e'(0) = 0. From (18) we 
then find that 

Zf exp[Ng + N'e'(m')] = (dy/2rri) exp[Ne(m) - Nym 

+ N'a(y) + N'b(y)m'] (26) 

For  N - +  ~ ,  the integral over y may be performed by the saddle-point 
method (the saddle point will be located on the real axis). Moreover, in this 
limit the sum over m reduces effectively to the maximum term: 

e'(rn') = Max {lae(m) - laym + l a ln(2 cosh y) 
mE[- i , i ]  

- ln[2 cosh b(y)] + b(y)m'} (27) 

The saddle-point condition for y gives 

U(tanh y - m) + [m' - tanh b(y)]b(y) = 0 (28) 

while the maximum term condition for m requires that 

y = d(m). (29) 

The derivatives in (28) and (29) are denoted by a dot to avoid confusion with 
transformed quantities. Equations (28) and (29) may be used to express y 
and m in terms of m'. Inserting y(m') and m(m') into (27), one has found 
the renormalized energy function e'(m') and the constant g. Thus (27) con- 
stitutes the renormalization transformation; at least this is the case provided 
that (28) and (29) allow a unique solution. We come back to this question 
at the end of this section, where it will be shown that there exists such a 
unique solution in a finite region around the fixed point. 

In order to study the possible fixed points of (27), we transform the 
equation by considering e(m), or rather its inverse tz 

tz(y ) = O-l(y) (30) 

as representing the Hamiltonian. This choice is advantageous because we 
find for the renormalized derivative O'(m') from (22) 

O'(m') = b(y) (31) 
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using that the implicit dependence of y and m on m' may be neglected in 
view of (28) and (29). Equation (31) is again a form of the renormalization 
transformation when y is expressed in terms of m'. By inverting (31) as 

t*'(b(y)) = m' (32) 

we obtain the renormalization transformation more transparently by now 
expressing m' in terms of y through use of (28) and the inverse of (29). 
Replacing b(y) by x and therefore y by b-l(x),  one finds for (32) 

/~'(x) = tanh x + U{t~(b-l(x)) - tanh b-~(x)}/b(b-~(x)) (33) 

This form of the renormalization transformation enables us to see immedi- 
ately that 

tz*(x) = tanh x (34) 

is a fixed point of the renormalization transformation. Converting to the 
e(m) language, it means that 

e*(m) = �89 + m)ln(1 + m) + �89 - m)ln(1 - m) (35) 

is invariant under the renormalization transformation. The result (35) is 
quite remarkable, as it shows that the fixed point is completely independent 
of the choice of the renormalization transformation, i.e., independent of 
the arbitrary b(y). 

Moreover, one sees from the solution (11) for the free energy that e*(m) 
is related to the function s(m) as 

e*(m) = - s ( m )  + In 2 (36) 

Thus at e*(m) all the coefficients in the Landau expression (12) vanish. This 
is in fact the source of the rather special nature of the scaling behavior of 
this model to be discussed in the next section. 

The form (33) for the renormalization transformation is particularly 
suited for the discussion of the structure of this transformation around the 
fixed point. Writing 

/~(x) =/z*(x) + r (37) 

one finds for the transform of r 

~'(x) = ~br (38) 

where the linear operator ~b is defined as 

Nb~b(x) = Ur Z(x))/b(b- ~(x)) (39) 

The form (39) is still a complete representation of the original transforma- 
tion given, e.g., by (27). The linearity of ~ allows us to discuss its properties 
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in terms of its eigenfunctions and eigenvalues, The nth eigenfunction ~b,(x) 
can be characterized by 

~b,(x) = x " - i  + O(x'* + 1) (40) 

with associated eigenvalue 

h, = la/b(o) '~ (41) 

One may construct the full eigenfunction recursively from its small-x be- 
havior by 

r  = [b(o)"/b(x)]4,,(x) (42) 

In fact, (41) is the second remarkable result because the eigenvalues depend 
on the choice of the renormalization transformation through b(0). The situa- 
tion found here is therefore opposite to the situation one usually expects 
in renormalization theory, where the fixed point depends on the choice of 
the transformation while the eigenvalue structure is supposedly independent. 

The action of the renormalization transformation on a general function 
/z(x) follows from the expansion 

ix(x) = ix*(x) + gl~bl(x) + g24J2(x) + ... (43) 

where the fields g, may be seen as Wegner's (7~ scaling fields. Representing 
the Hamiltonian in terms of the scaling fields, one has 

~b(gl, g2,...) = (Algl, h2g2,...) (44) 

To make the transition back to the original Hamiltonian representation 
e(m),  we have to work out the connection between the Taylor expansion 
coefficients J ,  and the scaling fields g,.  This can be achieved by a power 
series expansion and leads for the even coefficients to the formulas 

./2 = 1/(1 + g2), ,/4 -- [2 - 6g~ - ~2(0)g2]/(1 + g2) 4 . . . .  (45) 

Note that through ~2(0) the choice of the transformation enters in this rela- 
tionship. As the J2 couples only to g2, one derives easily the transformation 
for J2 as 

J2'  = J2/[J2  -t- he(1 - J2)] (46) 

The simplified representation (44) hinges only on the question of whether 
e(m)  is uniquely defined by a representation of the form (43) for ix(x). Since 
the construction of e(m)  from ix(x) involves an inversion, we need that 
t~(x) > 0. Assume now that the initial energy function is convex (which is 
the case if all couplings are ferromagnetic), so that d(m) may be inverted 
to ~(x). In terms of the functions t~ the renormalization transformation is 
uniquely given by (33) or (43) and O'(m) can be constructed provided that 
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#'(x) > 0. Since a unique construction of e'(m) can only be expected when 
the saddle-point equations (28) and (29) have a unique solution, it is no 
surprise that the condition ~'(x) > 0 is at the same time a sufficient condi- 
tion under which there is a unique saddle point. We see that one can safely 
use the representation (39) until one runs into a noninvertible tz(x). In terms 
of scaling fields, we have for inversion the condition 

#(x) = (cosh x) -2 + g2~2(x) + g4~4(x) + "" > 0 (47) 

for the even subspace. 
In order to analyze the condition (47) we have to know the behavior of 

the eigenfunctions ~b2,(x), which depends on the choice of the weight func- 
tion through the form of b(y). The properties that we need for a simplified 
discussion may be derived assuming 

b(y) ~- y + c, y--+ oo (48) 

and 

b(y) > y (49) 

which are both conditions for which weight functions implying them can 
be easily found. The asymptotic behavior (48) leads upon insertion into (42) 
to the asymptotic form 

~b2~(x ) _~ exp{2n[ln b(O)]x/c} (50) 

implying that ~b2,(x) increases faster, the larger is n. 
The recurrence relation (42) leads, furthermore, upon use of (49) to the 

conclusion that ~b2~ is increasing for all x provided that 

b(o)2~/b(x) > 1 (51) 

This last condition is fulfilled in the case that we will consider now, namely 
g2 relevant (A 2 > 1) and g4, g6,.-, not relevant (A4, Ae .... ~< 1), which implies 
l d/2 > b(0) > l a/4. In the other case (A~ > 1) one needs somewhat stronger 
conditions on b(x) so that ~bz, is increasing. 

Returning now to the question under which conditions tz may be in- 
verted, we see from (47) that this condition is fulfilled when all scaling fields 
are positive [since ~2,(x) is positive]. The case of interest will be that g4, 
g6 .... > 0 but that g2 is allowed to be negative (but g2 > - 1), which corre- 
sponds to the subcritical region, as we shall see. For small values of x the 
first term in (47) will guarantee the positivity of ~(x). For large values of x 
the g~ term dominates the g2 term in view of (50). The potential trouble may 
come from the intermediate x values. One needs a not too small positive 
value for g~ to compensate for the negative g2, i.e., one should demand 

g~ > M(g2) (52) 
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If  one starts the renormalization procedure in the subcritical region where 
(52) is satisfied, one cannot repeat the renormalization transformation arbi- 
trarily often without violating (52) since g~ will decrease (as it is irrelevant) 
and [g21 will increase and one is bound to run into a noninvertible/~(x). 

This fact is important if one tries to calculate the free energy. The free 
energy may be found recursively from the value of the constant g defined 
in (25) by use of the relation 

f ( e )  = g + l -a f (e  ') (53) 

which follows directly from the normalization condition (16). The value of 
the constant g may be found by setting m' = 0 in (28) and (29), which 
generally allows a solution m o =  Y0 = 0. If  this solution is unique, one ob- 
tains by insertion into (27) 

g =  (1 - l  -d) ln2  (54) 

When (54) applies to the whole renormalization trajectory one finds by 
iterating (53) for the free energy 

f = In 2 (55) 

which agrees with the free energy found in the previous section in zero field 
above the critical point, but not with that found under subcritical conditions. 
The conclusion is that somewhere down the renormalization trajectory for 
T < Tc the uniqueness condition is no longer met. However, as we shall see 
in the next section, one can still deduce the potential critical behavior from 
the renormalization transformations around the fixed point, where tz(x) 
may be inverted. 

4. S C A L I N G  B E H A V I O R  OF THE FREE E N E R G Y  

As usual, the basis of the scaling behavior is the recurrence relation 
(53). In terms of the deviations r from the fixed point defined in (37), this 
relation takes the form 

f(~b) = l - a f ( ~ r  + g (56) 

It is instructive to notice, following Wegner, (9~ that two renormalization 
operators ~ and ~ corresponding to the same cell size l a, but to different 
weight functions, are related by an "equivalence" operator ~ as 

= ~ (57) 

The "equivalence" operator -~ has the property that it leaves the free energy 
invariant 

f(~b) = f ( .~b)  (58) 

as may be seen by inserting (57) into (56). 
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In particular, we will use the operator N0, which connects the renormal- 
ization operator ~b with the renormalization operator ~1 corresponding to 
a "decimation" weight function (z~ defined by 

t ( s ;  s~ ..... s,) = 3~.~ (59) 

Such a decimation transformation corresponds, by (20), to b ( y )  = y ,  which 
upon insertion into (39) implies 

~l~b = /a~ (60) 

Consequently ~ is simply l a times the unit operator. The equivalence 
operator 

-@0 = ~ i - ~ ' ~  (61) 

takes the form 

9 ~ b ( x )  = ~ (b  - l ( x ) ) / b ( b -  l ( x ) )  (62) 

and has the same eigenfunctions as ~b: 

~o~b,(x)  = b(o) -"~b , (x )  (63) 

Returning now to the scaling relation (56), we note that in terms of 
scaling fields it takes the form 

f ( g 2 ,  g4,  g6 .... ) = l -a f (~2g2 ,  ~494, ~696 .... ) (64) 

for the moment considering only the even subspace. Noting that 

A, = la /b(o)"  - l a-~" (65) 

it follows by the usual ~11~ arguments that the (singular part of) the free 
energy can be expressed in terms of a scaling function ~ (+ referring to 
the sign of g2) as 

f s (g2 ,  g4,  g6 .... ) = [g2]al'a- 2~q~ ~ (g4[g~[ ' ~ - a ) ' ' e -  9"z>, g6[g2['6~-a~;(a- 2~>, ...) 

(66) 

This seems to imply critical exponents that depend on the choice of the 
renormalization group through the value of z. This difficulty is resolved if 
one notices that the scaling function ~b~ depends singularly on the scaling 
field g4. In the case ~- > d/4,  when g4 is actually irrelevant this variable is 
therefore called a dangerous irrelevant variable. (4~ The behavior of the 
function 4'~ can be deduced from its scaling behavior under the action of 
the equivalence operator ~ defined above. Use of the invariance property 
(58) together with the transformation law (63) into Eq. (66) yields 

q~ ~(g4, g6 .... ) = /z~ ~(tzg4, tz2g6 .... ) (67) 

with p~ given by 

tz = l 2~ar 2~) (68) 
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Consequently, ~ can in its turn be written in terms of a scaling function 

4; as 

c~ •  g6, . . . )  = (1 /g~)~ . (g6 /g~2, . .  .) (69) 

Inserting this relation into (66), we obtain for the free energy 

f~(g2,  g~t, g6 .... ) = (g22/g4)~:~(g6]gzl/g42,. . .)  (70) 

From this relation it follows that the free energy in the limit g2 -+ 0, g4 > 0 
exhibits the usual mean-field-type singularity giving rise to the classical 
value a = 0 for the specific heat critical exponent. At least this is the case 
provided that the scaling function qg~ does not diverge in this limit, i.e., 
qg~(0, 0,...) should be finite. From (70) it follows that 

~ . ( 0 ,  0, . . . )  = (g4/g22)fs(g2, g4, 0, 0,...) (71) 

Recalling now the discussion at the end of the previous section, we see that, 
if one chooses g4 > M ( g ~ ) ,  the right-hand side of (71) is actually related to 
the free energy of a system with a properly defined energy function e ( m )  
and is therefore expected to be finite. 6 Notice that a similar reasoning for 
~ ( 0 ,  0,...) fails because its value will be related to the free energy of a 
point (g2, 0, 0,...). 

I t  is possible to avoid the occurrence of a singular scaling function by a 
particular choice of  the renormalization group operator. I f  one chooses 
~- = d/4,  the dangerous variable g~ is left unchanged and the scaling relation 
(70) follows directly f rom (66). This choice of the renormalization group 
operators can be seen as the combined action of a renormalization and a 
properly chosen equivalence operator. A similar procedure was in fact 
already used by Wilson in his original renormalization group article, ~12~ 
where a renormalization step was combined with an appropriate spin re- 
scaling step. The fixed point for this particular choice of the renormalization 
group operator is, for an arbitrary constant g4*, 

#* = tz* + g4*~b4 (72) 

with eigenvalues 

A,~ = l a~1-'~/4) (73) 

The eigenvalue ~2 = l a/2 implies ~ = 0, as already found from the scaling 
relations. 

I f  we consider now also the space of o d d  interactions, we find a relevant 
eigenvalue A~ = l 3aj~ which, via the well-known relation 

3 = In )q / (d  In l - In ,~1) (74) 

6 This of course does not exclude the possibility that ~,(0, 0,...) = 0, which amounts to 
a singularity with a zero amplitude, as is actually the case for g2 > 0, i.e., for T > To. 
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implies the classical value 3 = 3. There is, however, a second relevant eigen- 
value present in the odd space, namely A3 = I a/4, corresponding to the 
scaling field ga. This scaling field is, as we will show, a redundant scaling 
field, which means that new scaling fields gz, g2,.., can be defined as analytic 
functions of the old fields so that 

f ( g l ,  g2, g3, g4,...) = f (g~ ,  g,2, O, g4 ,...) (75) 

In other words, g3 can be transformed away (by an analytic transformation) 
and its eigenvalue does not bring about a new critical exponent. The presence 
of this variable is important, however, for the equation determining the 
critical surface because the latter is not given by gl = g2 = 0, but by 
gl = g~ = 0. 

In order to show that ga is redundant, we use Wegner's original defini- 
tion, (9) according to which redundant operators are operators obtained by 
applying the infinitesimal generators of the equivalence operators to the 
fixed-point Hamiltonian. Wegner shows that a renormalization group can 
be chosen such that the free energy does not depend upon the scaling fields 
of the so-defined redundant operators. From this the relation (75) follows 
directly. 

In the present case the generator of the equivalence operator @+r 
applied to the fixed point #* defined in (72) yields, by expanding (62), a 
function ~b given by 

4,(x) = -g4*[f(x)4,4(x)  + f (x)~4(x)]  (76) 

At this point we allow the weight functions used in defining -~1+r to be non- 
symmetric, which does not affect the invariance property (58) since this is 
based entirely on the normalization of the weight functions. In that case 
f (0 )  # 0 and the Taylor expansion of ~b(x) starts with a third-order term. 
The expression for the redundant operator v ~b in terms of the eigenfunctions 
~bn of N will therefore contain ~b a. Since, as shown by Wegner, (9) the sub- 
space of redundant operators is an invariant subspace under the action 
of ~ ,  this implies that ~b a itself is a redundant operator. The redundancy 
of  ~a may be seen as a reflection of the well-known observation that a 
third-order term in the Landau expression (12) can be transformed away 
by a shift in m. 

5. SCALING OF THE CORRELATION LENGTH 

In order to discuss the behavior of the correlation length, it is no longer 
possible to consider only a uniform potential as we could in the case of the 

7 We stick to the commonly used expression "redundant operator," although in the 
present case 4~ is a function. 
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thermodynamics. We shall in fact need to know how the range of a poten- 
tial with a long, but finite, range transforms under the renormalization 
group. In addition, this will enable us to see when the "mean-field" fixed 
point discussed in the previous sections is attracting for potentials with 
finite ranges. 

Consider first the Hamiltonian defined in (3) for two-body interactions 
only, i.e., 

H(s)  = ~.  J2(rl - r2)srlsr2 (77) 
FIPr2 

with 

J2(r) = ydj(vr) (78) 

We make use of the cumulant expansion (la) to see how (77) transforms under 
the renormalization group defined by 

en'(*" = E H t(s;,; st,1 .... , sr, , ' )e n ' '  
{s} t '  

(79) 

Expansion of the exponential in (79) transforms the problems into the cal- 
culation of cumulant diagrams with interaction bonds connecting cells j ' .  
The basic observation is that all diagrams involving loops do not contribute 
to lowest order in Y. Thus the renormalized two-body interaction J ' (r)  be- 
tween two given cell spins is, to dominant order, given by the sum of all 
chain diagrams connecting these cells (see Fig. la). Since each term in this 
sum is actually a repeated convolution, it is convenient to describe the trans- 

(a) 

Fig. 1. Lowest order cumulant diagrams. (a) Example of chain diagrams contributing 
to J2'(r~, rj). (b) Typical diagrams contributing to Ja'(r~, rj, ri, r~). The wavy bond stands 
for any chain bond of the type depicted in (a). 
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formation in terms of the Fourier transform J2(k) of Jz(r). The transformed 
sum is a geometric series, and one finds finally 

Y2(k/t)(Y~ ( s , ) )  2 (80) 
Y2'(k) = t~ _ y2(k/0[ ld  _ (~ ,  (s , ) )~ ] 

where (st) is the average of the ith site spin under the cell weighting function 
t ( s ' ;  81, Sz,...). Note that the sum in (80) is directly related to the function 
b(y )  introduced in (20) by 

la 

(~,) = b(0) (81) 
i = 1  

We can therefore rewrite (80) in terms of the eigenvalue A2, Eq. (41), as 

Y2(k/ t )  (82) 
�9 f2'(k) = a2 + (1 - Az).f2(k/l) 

Setting k = 0 in (82) yields the transformation of the integrated strength 
Jz(O) = .12 of the two-spin interaction, in agreement with the previously 
derived transformation (46) for uniform couplings. 

In a similar way, by this cumulant method one can derive the renormal- 
ized four-spin interaction J~'(rl, r2, r3, r4). The diagrams involved are indi- 
cated in Fig. lb. We do not record the result here, but make the general 
remark that the integrated four-spin interaction strength also checks with 
that which follows from the relation (45) for the uniform potential model. 
The calculation of J~' is tedious and it is not clear how to obtain the general 
J , '  (or even their fixed-point values J,*) by this cumulant method. 

The transformation of the range R of the pair potential can be deduced 
from (82) via the relation 

R ~ = )~(0)/Y2(0) (83) 

from which it follows that at the fixed point [J2(0) = 1] the transformed 
range R' is given by 

R ' =  [/d'2- Vb(0)]R (84) 

Turning now to the behavior of the correlation length ~:, we write down 
the usual scaling relation ~8'~4~ 

~ ( H )  = I~ (H ' )  (85) 

More explicitly, in terms of scaling fields, 

~(g2, g , ,  g6 .... ; R )  = l~(;%gz, h~g~, 216g6 .... ; ;~RR) (86) 

where we introduced the range of the two-body forces as an extra scaling 
field with eigenvalue ~,R: 

~R = ld12-~/b(o) -- l aj2-('+ ~ (87) 
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We restrict the discussion to this one extra scaling field representing the 
second moment of J2, although in principle also the higher moments of J2 
and the moments of J4, -/6, etc., could be taken into account. If  one analyzes 
the scaling relation (86) in a similar way as that of the free energy in the 
previous section, one finds that ~ can be expressed in terms of a scaling 
function X~ as 

 (g2, g , ,  go .. . .  �9 R )  = (g 21-1'd , \--g-~! X~(g6lg2l/g,L...; Rg;l/ag(z4-al2a) (88) 

I f  X~ would behave properly, this would imply a correlation length exponent 
v given by v = 2/d, which satisfies the hyperscaling relation (1). However, 
in interpreting (88) one should realize that the cumulant approximation 
used to derive it becomes exact only in the limit R-+oo.  One expects that 
for a noncritical system the correlation length will diverge proportionally 
to R in that limit. This implies for the scaling function X~ that for large R 

X~(g6,...; R) = J~(g6,...)R (89) 

where )~ is now a well-behaved scaling function. Inserting this relation into 
(88) yields 

~(g2, g~, g6 .... ; R) = Rg~ 112 ~•  (g6 [g2 i ig,L...) (90) 

which implies the classical value v = �89 violating hyperscaling when d # 4. 
We conclude that in the scaling relation for the correlation length it is the 
range R (or rather its inverse 1/R) that plays the role of a dangerous variable. 
Just as in the case of the thermodynamics, it is also possible to choose a 
special renormalization group so that the usual relation 

v = In//In As (91) 

is valid. In the present case the choice r = d/2 - 1 leaves the range un- 
changed and yields v = �89 in (91). 

6. C O N C L U S I O N  

We have seen that the breakdown of hyperscaling is connected with the 
presence of "dangerous"  variables. The way in which these variables occur 
within this position-space renormalization theory is connected with the 
special position of the fixed point for which all coefficients in the corre- 
sponding Landau free energy vanish. One might say that this fixed point 
contains multicritical phenomena to arbitrary order. In this paper we re- 
stricted ourselves to ordinary critical behavior. 
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We have further demonstrated that the invariance operator 9 is im- 
portant for the discussion of  both "redundant"  and "dangerous" operators. 
When the fixed point of a renormalization transformation is left invariant 
by an invariance operator 9 ,  "dangerous"  operators are to be expected 
and the singular structure of the scaling functions may be obtained from 
their transformation laws under -~. The other possibility (which is, one 
hopes, more common) is that the fixed point is not invariant under 9 .  The 
direction into which it moves is then a redundant direction. 

In the present analysis dangerous variables occur generally both in the 
thermodynamics and in the correlation length. Among all possible re- 
normalization transformations there are two special classes. The first class, 
with b(O) = U I4, has the property that the scaling field g4, which is a dangerous 
scaling field for the free energy, is not rescaled. The thermodynamic ex- 
ponents follow in that case directly from the usual relations. However, for 
the correlation length the range R now acts as a dangerous variable and 
brings about a value for  v that differs from the usual expression that would 
have implied hyperscaling. The second class of renormalization transforma- 
tions are those with b(0) = l a/2-1. The situation is then reversed; the cor- 
relation length exponent can be obtained directly but the derivation of the 
thermodynamic exponents needs to be refined due to the presence of the 
dangerous variable g4- 

We close this paper by noting that also in this position-space renormat- 
ization-group treatment d = 4 emerges as the dimensionality above which 
classical exponents are expected (8~ for some class of finite-range potentials. 
Consider again Eq. (88) for a finite 8 R and note that in the limit where the 
critical point is approached (i.e., in the limit g2 ~ 0) this equation connects 
the correlation length for a system with finite R with that of a system of 
R = oo provided that 4 - d < 0, i.e., d > 4. A similar statement can be 
seen to hold for the free energy by repeating the scaling analysis for the free 
energy of  a system with finite R. Consequently, one expects the classical 
exponents obtained in this paper for infinite-range potentials to be valid 
also for finite-range potentials, with R sufficiently large, when d > 4. How 
large this R should be depends upon the possible existence of  other fixed 
points for finite R beyond which Eq. (88) is no longer valid. 
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a R should be large enough so that (88) is applicable when R is replaced by a generalized 
scaling field R. 
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